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Abstract. Continental shelves are critical for the global carbon cycle, storing substantial amounts of organic
15 carbon (OC) over geological timescales. Shelf sediments can also be subject to considerable anthropogenic
pressures, offshore construction and bottom trawling for example, potentially releasing OC that has been
sequestered into sediments. As a result, these sediments have attracted attention from policy makers regarding
how their management can be leveraged to meet national emissions reductions targets. Spatial models offer
solutions to identifying organic carbon storage hotspots; however, data gaps can reduce their utility for practical
20 management decisions. Regional spatial models of OC often use global scale predictors which may have biases
on regional scales. Moreover, dry bulk density (DBD), an important factor in calculating OC stock from sediment
OC content, has comparatively few data points globally. We compared two spatial models of OC stock in the Irish
Sea, one using unadjusted predictors and a previously used method to estimate DBD, and another incorporating
bias-adjusted predictors, from in situ data, and a machine learning-based DBD model, to assess their relative
25 performance. The adjusted model predicted a total OC reservoir of 46.6 = 43.6 Tg within the Irish Sea, which was
31.4% lower compared to unadjusted estimates. 70.1% of the difference between adjusted and unadjusted OC
stock estimates was due to the approach for estimating DBD. These findings suggest that previous models may
have overestimated OC reservoirs and emphasizes the influence of accurate DBD and predictor adjustments on
stock estimates. These findings highlight the need for increased in situ DBD measurements and refined modelling
30 approaches to enhance the reliability of OC stock predictions for policy makers. This study provides a framework
for refining spatial models and underscores the importance of addressing uncertainties in key parameters to better

understand and manage the carbon sequestration potential of marine sediments.



https://doi.org/10.5194/egusphere-2025-661
Preprint. Discussion started: 7 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

1 Introduction

35 Continental shelves are important sinks of atmospheric carbon dioxide and play a key role in the global carbon
cycle (Frankignoulle and Borges, 2001). Marine sediments in these environments store substantial amounts of
organic carbon (OC) over millennia (Hage et al., 2022; Laruelle et al., 2018). Effective management of these
natural long-term stores of OC has the potential to offer policy makers a mechanism to offset emissions. As a
result, nature-based solutions to mitigating anthropogenic greenhouse gas emissions have received much scientific

40 interest in recent years (Griscom et al., 2017). For example, coastal vegetated habitats store >30 Pg of OC globally
and management of these habitats is thought to have the potential to offset approximately 3% of annual global
greenhouse gas emissions (Macreadie et al., 2021). Global estimates of OC stocks in continental shelf sediments
are up to nine times that of coastal vegetated habitats (between 256 to 274 Pg) (Atwood et al., 2020) and while
still heavily debated, emissions from human pressures on marine sediments are thought to be substantial (Hiddink

45 et al., 2023; Sala et al., 2021). Despite their large capacity to store OC, efforts to quantify stocks and potential
emissions reductions from management are relatively recent (Diesing et al., 2017; Epstein et al., 2024; Smeaton
etal., 2021). Subcontinental and national scale OC stock estimates have been undertaken, for example Diesing et
al. (2017) reported that the Northwest European continental shelf contained between 230 and 880 Tg OC stored
in the uppermost 10 cm of the sediment column and Smeaton et al. (2021) estimated that between 456 and 592

50 Tg of OC were stored in surficial (0 — 10 cm) marine sediments within the United Kingdom Exclusive Economic

Zone.

Despite advancements in understanding OC storage in marine sediments, data and knowledge gaps remain. One
such data gap is that of marine sediment Dry Bulk Density (DBD). DBD represents the mass of dry sediment
within a given volume of wet sediment, which is multiplied by OC content and sediment depth to calculate an
55 mass of OC per unit of s area, which is the OC stock (Taalab et al., 2013). DBD is a scaling factor on OC content
and adjusts the OC content in a given volume based on the density of sediment, altering OC stock estimates. Thus,
DBD has a significant effect on OC stock estimates. Previous estimates of OC stocks in terrestrial soils suggest
much of the uncertainty in overall stock estimates results from uncertainty in sediment density (Dawson and
Smith, 2007). Despite the importance of DBD in calculating OC stock, however, there remains a lack of direct
60 measurements for marine sediments. For example, Atwood et al. (2020) compiled a global database of ~12,000
sediment cores to predict global OC stocks and over two-thirds (69%) of their data were lacking DBD

measurements.

Subcontinental predictions of OC content are frequently based on global environmental predictors, which may
contain biases when applied to regional or smaller scales (Galmarini et al. 2019). As a result, applying bias
65 adjustments to model input data to align better with observational data is common practice in other scientific
disciplines, for example localised climate modelling and agricultural impact assessments (Laux et al., 2021; Luo
et al., 2018). Bias adjustments are an important component of climate modelling to reduce systematic errors in
model outputs, ensuring that projections match local conditions and are reliable for practical applications (Laux
etal., 2021). Bias adjustments have been used to improve climate model utility in agricultural impact assessments,
70 such as predicting planting dates and crop suitability in water-limited regions; to correct overestimations in soil

moisture models and to improve predictions in sea ice thickness (Laux et al., 2021; Lee and Im, 2015; Mu et al.,
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2018). These studies collectively highlight that bias adjustments are essential for improving the precision and
applicability of climate model outputs across different environmental contexts, however, their ability to adjust

predictions of marine sediment OC stocks has not been investigated.

75 Public data repositories provide an opportunity to use data gathered over large spatial scales not practical to collect
over short- and medium-term research projects (Mitchell et al., 2019). Ocean and earth sciences data, in particular,
lend themselves to being collated across research groups and sampling expeditions. Much of the instrumentation
and parameters measured are the same, for example temperature and salinity. In order to perform bias adjustments
of globally modelled data, large datasets of parameters of interest are required (Laux et al., 2021). Public

80 repositories, for example, the Pangaea repository of datasets (Felden et al., 2023), the International Council for
the Exploration of the Seas (ICES) data centre (https://www.ices.dk/data/Pages/default.aspx) and national
repositories such as Ireland’s Marine Institute offer large amounts of ocean data which can be used to perform
localised bias adjustments. Additionally, data specifically useful for spatial modelling of marine sedimentary OC
stock, for example OC content and DBD is available from the Modern Ocean Sediment Archive and Inventory of

85 Carbon (MOSAIC) (Paradis et al., 2023; Paradis and Eglinton, 2024).

This study aimed to determine whether bias adjusted model predictors and improved estimates of DBD could be
used to improve estimates of OC stock within the Irish Sea. To address this question, the estimates of two spatial
models to predict OC stock in surficial sediments in the Irish Sea were contrasted. The first model was developed
using un-adjusted predictors and a widely used DBD model (Diesing et al., 2017, 2021; Smeaton et al., 2021) to
90 estimate OC stock from OC content; and the second model was developed by bias adjusting and downscaling

predictors using observational data and a machine learning spatial model of DBD (Fig. 1).

2 Regional setting

The Irish Sea is a shallow continental shelf sea between the land masses of the island of Ireland and Great Britain,
with an average water depth of 60 m and a maximum depth of approximately 315 m (Fig. 2). The area has a
95 complex geological history of previous glaciation coupled with marine transgression, and so the seafloor in this
area consists of a mosaic of sediment types and bedforms (Arosio et al., 2023; Scourse et al., 2019; Ward et al.,
2015). At present, a combination of wave and tidal current action results in a significant amount of sediment being
mobilised and transported within the region (Coughlan et al., 2021). Previous studies in mapping organic carbon
stocks for this region have either been coarsely resolved as part of a wider geographical study or limited to parts

100 of the Irish Sea (Diesing et al., 2017; Smeaton et al., 2021; Wilson et al., 2018) (Crowe et al., 2023)

The study area detailed here covers a marine area of 75,229 km? and spans latitudes 50°N to 56°N and longitudes
8°W to 2°W (Fig. 2). OC content (%) (OCcontent) and OC stock (OCsiock) Were estimated within the study area,
excluding areas within inshore waters (Smeaton et al., 2021). The inshore area excluded from the study area was

105 defined by the Maritime Boundaries Geodatabase (Maritime Boundaries Geodatabase: Internal Waters, version 4.

).
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3 Methods
3.1 Organic carbon content data

Direct measurements of sediment OCconeent Were obtained from various sources, including published scientific
110 literature, governmental organizations, as well as a private organization (Supplementary information S1). Only
OCeontent data from the top 10 cm of the sediment profile were included in the analysis as the aim of the study was
to estimate surficial sediment OCcontent and OCgock. Data that reported Loss on Ignition (LOI) were converted to

OCeontent using Eq. (1) (Grey et al., 2024):
OContent = LOI X 0.51 + 0.11, )

115 This conversion equation was locally developed on Irish Sea OCcontent to LOI ratios where OCcontent Was measured

using an elemental analyser.

OCeconient data points were spatially aggregated to match the spatial resolution of the finest resolution model
predictor, which was EMODNet bathymetry (approximately 155 m by 230 m cell size) later used in model
training. When multiple response data points fell within a single grid cell, the mean was calculated, giving one

120  value per grid cell.

3.2 Predictor data
3.2.1 Data for bias correction

To compare two spatial models for predicting OC.content, two predictor datasets were developed: pre-adjustment
predictors (predictorsy.) and post-adjustment predictors (predictorsyest) (Table 1). Potential model predictors were
125 selected based on their anticipated relevance to OCcontent (Diesing et al., 2017, 2021). Predictorsy.. were sourced
from a variety of governmental organizations and published scientific literature (Table 1). Detailed descriptions

of predictorsy. are provided in the supplementary methods.

As global scale models can have biases on regional scales (Casanueva et al., 2018, 2020; Galmarini et al., 2019;
Roberts et al., 2019), predictorspos data were developed by regionally bias adjusting and downscaling predictorspre
130 data using in situ measurement data. Observation data from the Northwest European Shelf, rather than just the
study area (Irish Sea) were used to maximize the data available for bias adjustment, resulting in regionally bias
adjusted predictorsyes: data. Observational data used to bias adjust predictorsp. were sourced from public
repositories: Pangaca (www.pangaea.de), The Marine Institute
(https://erddap.marine.ie/erddap/tabledap/IMI_CTD.html) and MOSAIC (Paradis et al., 2023; Paradis and
135 Eglinton, 2024) and temporally aligned with inputs,.. data. More detail of the observational data is provided in

supplementary methods.

3.2.2 Bias adjustment

Depending on data availability, different approaches were used to bias adjust predictorspy.. Bottom water
temperature (BWT), bottom water salinity (BWS), mean and maximum bottom water velocities (BWV mean and

140 BWViax), surface chlorophyll-a, summer surface suspended particulate matter (SPMgummer) and winter surface
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suspended particulate matter (SPMuyincer) all followed a quantile-quantile (QQ) mapping bias adjustment approach
(Casanueva et al. 2020). First, point observational data were harmonized with predictorsy.. data, which were
spatially continuous averages over several years. Briefly, observation data, which represent a measurement at one
point in time and space, were smoothed across time and space (Cheng et al., 2017, 2020; Cheng and Zhu, 2016).
145 A spatially continuous interpolated surface was then created from the smoothed data (Cheng et al., 2017, 2020;
Cheng and Zhu, 2016). Original predictorsy. data were then adjusted using the interpolated surface by QQ
mapping. QQ mapping bias adjusted models have been shown to outperform un-adjusted models (Ngai et al.,
2017), and are commonly used as they preserve the trends in the original model, but adjust predictions’ distribution
to better align with in situ measurements (Ngai et al., 2017). More detail of the QQ mapping approach is provided

150  in supplementary methods.

Since multiple models for sediment properties—mud, sand, and gravel content—exist in the study area (Mitchell
et al., 2019; Stephens and Diesing, 2015; Wilson et al., 2018), they were averaged. Previous research has shown
averaging multiple models can reduce error (Dormann et al., 2018). However, as sediment data are proportional,
bounded by 0 and 1 and their sum must equal 1, prior to averaging mud, sand and gravel content, additive log

155  ratio (ALR) transformations were applied using Eq. 2 and Eq. 3 (Mitchell et al., 2019):

mud

ALRy, =log (7). )
d
ALR; =log (-2, 3)

ALR, and ALR; were then averaged across the three different models (Mitchell et al., 2019; Stephens and Diesing,
2015; Wilson et al., 2018) and then back transformed to compositional data using the following Eq. 4, Eq. 5 and
160  Eq. 6 (Mitchell et al., 2019):

mud = exp (ALRm) (4)

exp(ALRy,)+exp(ALRg)+1’

_ exp (ALRg)
sand = exp(ALRg)+exp(ALRy)+1’ (5)
gravel = 1 — (mud + sand), 6)

Mud, sand and gravel outputs above represented the final adjusted mud, sand and gravel predictors used in

165  predictorspost.

Adjusted current and wave orbital velocities at the sea floor were sourced directly from scientific literature as
these models were locally developed using in situ measurements (Coughlan et al., 2021). Distance to coast was
not adjusted as it is a simple calculation of the geographical distance for each data point to the nearest coast.
Bathymetry was also not adjusted as only the EMODNet bathymetry model was used. EMODNet bathymetry

170 offers the highest resolution and was developed specifically for European waters (https://emodnet.ec.europa.eu/).
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3.2.3 Validation of predictorspost

Predictorsyes: were validated against observation data to assess whether the adjustment improved their agreement
with in situ data. To avoid artificial skill, a k£ fold cross-validation approach was employed, ensuring that the
validation was conducted on data not used in the bias adjustment process (Maraun and Widmann, 2018).
175 Specifically, the bias adjustment was performed five times, each time excluding a different non-overlapping fifth
of the observation data. For each fold, the Root Mean Squared Error (RMSE) was calculated for the bias-adjusted
predictor using the observation data that had been omitted from the adjustment process. RMSE represents the
difference between a model’s predictions and observational data and is a commonly used metric to test model
performance (Mila et al., 2022). Lower RMSE values represent improvements in model performance. This was
180 repeated across all folds, and the mean RMSE was used to represent the overall RMSE. This overall RMSE was
then compared to the RMSE of predictorsy. to determine whether bias adjustments improve predictor accuracy

(Maraun and Widmann, 2018).

3.2.4 Dry bulk density

DBD is the mass of dry sediment within a given volume of wet sediment and is required to calculate OCsock from

185  OCcontent. While it is not a predictor for modelling OCcontent, it is crucial in calculating OCsock. Therefore, two
versions of DBD were developed, one un-adjusted and one adjusted to be later combined with unadjusted and
adjusted OC content predictions, respectively. Unadjusted DBD (DBD,.) was modelled from sediment porosity
using Eq. 7, Eq. 8 and Eq. 9 (Diesing et al., 2017; Smeaton et al., 2021):

DBD kgm™ = (1 - ¢)ps, (7
190 p, =2650kgm™3, (8)
¢ = 03805 X Cpyq + 0.42071, ©)

Where sediment porosity (¢p) was calculated as a function of mud content (Cua) and assumed a grain density (ps)
0f 2650 kg m™. By contrast, adjusted DBD (DBDj.s) was spatially predicted using in situ data from the Northwest
European Shelf and a Random Forest (Breiman, 2001) model (details in Sect. 3.3.1).

195 3.3 Model and spatial prediction
3.3.1 Model training

Two OCcontent models were trained to compare the effects of using pre-adjustment (OCeontent pre) and bias-adjusted
(OCeontent post) predictors. The Random Forest (RF) algorithm was used as it has been shown to perform well for
geospatial modelling (Diesing et al., 2021; Hengl et al., 2015; Meyer et al., 2018). The RF model was trained
200 using the Forward Feature Selection (FFS) algorithm to omit unimportant predictors (Meyer et al., 2018). FFS
trains multiple RF’s using all possible 2-predictor combinations. The best of these 2-predictor models is kept, and
all possible 3-predictor models are trained using the already selected two predictors. The number of predictor
variables is increased iteratively. Model performance is tested for each additional predictor and the process stops
when none of the remaining variables decreases the model RMSE (Meyer et al., 2018). After model training,

205 partial dependence plots were used to visually inspect the associations between the response data (OCeontent) and

6
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the predictors deemed to be important by FFS. Additionally, DBD,.s Was spatially modelled to later calculate
OCitock from OCcontent. Predictorspost were used to train DBDpo. Similarly to OCeonten, an RF was trained, which

was implemented using the FFS algorithm.

3.3.2 Model validation

210  All FFS RF models (OCcontent pre, OCcontent post and DBDjpogst) were validated using the Nearest Neighbour Distance
Matching (NNDM) Leave-One-Out (LOO) Cross Validation (CV) approach (Mila et al., 2022). NNDM LOO CV
matches the distance distribution functions of training to testing data to the distance distribution function of
prediction to training data (Supplementary information S1 and S2). This validation approach has been shown to
produce more reliable estimates of spatial model performance than random £ fold CV (Mila et al., 2022). Random

215 k fold CV randomly creates train-test splits for model training testing validation, which ignores autocorrelation in
spatial data and carries the high probability data points that are spatially autocorrelated may be used to train and
test model performance simultaneously. Thus, such an approach is increasing the tendency for model performance
to be overestimated (Mila et al., 2022). Conversely, NNDM ensures that CV is performed on data that are spatially
independent of training data. In addition to NNDM LOO CV, the DBD,.ss RMSE against observational data was

220 calculated to determine whether RF modelling to spatially predict DBD (DBDjos) Was an improvement compared
to modelling DBD from porosity (DBDj.) (details in Sect. 3.2.3).

3.3.3 Model uncertainty

Model uncertainty was calculated for each of the OCcontent models as well as DBDpost. Uncertainty was estimated
by calculating the standard deviation between 25 Random Forest (RF) predictions (Diesing et al., 2021). Response
225  data were divided into 25 folds, each with a 70% to 30% train/test split, resulting in 25 models. For each pixel,
the standard deviation of the 25 predictions was computed. The total uncertainty was then determined by summing

these standard deviations (Diesing et al., 2021).

3.4 Calculation of organic carbon stock and total reservoir

The spatial variation in OCgock, Which is the mass of OC stored in sediment per unit of area to a specific depth,
230 across the study area was calculated for each set of un-adjusted inputs (OCcontent pre and DBDyre) and adjusted inputs

(OCeontent post and DBDyost) using the following equations (Diesing et al., 2017):
0C stockpy, kg/m? = 0Ccontent pre X DBDy,.. X cell area X depth (Eq. 10)
OC stockygst kg/m? = OC.ontent post X DBDpog X cell area X depth (Eq. 11)

OCeontent and DBD were the predicted values from the final selected OCconent and DBD models, respectively. Cell
235 area was calculated using the cellSize() function in the terra package (Hijmans, 2025) in R. The cellSize() function
calculates the area covered by grid cell in the study area, rather than assuming a constant grid cell size across the
study area. Depth was assumed to be a constant 0.1 m to estimate surficial sediment OC stock. This equation was

applied to each grid cell across the study area.
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Additionally, the total mass of OC to a specific depth within in the entire study area, termed OC reservoir, was
240 calculated by summing OC stock (calculated above) for all grid cells in the study area. In order to parse the relative
importance of OCeontent and DBD estimates to the overall OCyock estimate, all possible combinations of bias

adjusted and non-bias adjusted OC content and DBD models were calculated.

4 Results
4.1 Data collation
245 4.1.1 Data sourced

Actotal of 1670 in situ measurements of surficial sediment OCconene Were obtained from various sources within the
study area (Supplementary information S3). After spatial aggregation of OCcontent data and removing data points
within the excluded inshore area, 450 data points were available for model training. Observation data availability
for model predictors varied significantly (Table 1). BWT had more than 300 times the amount of data as SPM,

250 the predictor with the lowest amount of legacy data available. DBD had 642 data points across the entire Northwest
European Shelf.

4.1.2 Predictor improvement: predictorspre vs predictorspost

Except for SPMsummer and BWT, all predictorspest data showed improved consistency with observation data
according to RMSE comparisons (Table 1). Therefore, unadjusted SPMgummer and BWT were used in the
255 predictorspest dataset for model training. The extent to which predictors,. were adjusted varied (Fig. 3). Mean
adjusted BWS, for example, showed little change in RMSE between predictorsy.. and predictorsyes (Table 1).
Mean change in BWS was 0.09 psu compared to predictorsy... However, SPMyiner Was adjusted to a greater degree.
Mean change in SPMyiner was -9.97 mg 17!, which is also reflected in a greater shift in SPMyineers data distribution
(Fig. 3). Sediment properties, mud, sand and gravel content were not changed to a large degree (Fig. 3). Mean

260 adjusted change from predictorsy. to predictorspost in Cud, Csand and Cgravet were -0.03, 0.07 and -0.04, respectively.

4.2 Random forest modelling
4.2.1 OCecontent and DBDpost Variable selection

Different predictors were selected during the OCconient model training process. FFS chose five important predictors
for both OCcontent pre ad OCcontent post (Fig. 4). Selected predictors for OCeontent post Were Cinud, WO Vmax, chlorophyll-
265 a, bathymetry and distance to coast, of which, Cnug and WOV e were the most important. OCeontent post’s Mean
Squared Error (MSE) increased by 52.3% and 27.9% when Cnus and WOV e were respectively removed from
the model (Supplementary information S4). Partial plots also showed Cnu had a positive relationship with
OCeontent, While WOV a was inversely related to OCeontent (Fig. 4). In contrast, predictors selected for OCcontent pre
were SPMgummer, salinity, chlorophyl-a, WOV ax and Cgraver (Fig. 4). SPMgummer Was the most important predictor
270 for OCcontent pres Which accounted for a 62.9% increase in the model MSE when removed (Supplementary

information S4).

Six important predictors were selected by RF FFS for DBD,s; (Fig. 4). Important predictors were Cmud, SPMsummer,
SPMuinter, Cgravel, WOVmax and WOV mean. Cinug, Which was inversely related to DBD (Fig. 4) was the most
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important predictor, resulting in an increase in model RMSE by 44.3% when removed (Supplementary

275 information S4).

4.2.2 Model performance and predictions

OCcontent post (R?=0.61, RMSE=0.31%) showed a slight increase in performance compared to OCecontent pre (Table 2,
OCeontent post AR? = +0.03 vs. OCeontent pre; OCcontent post ARMSE = -0.01% vs. OCeontent pre). This similarity in
performance was reflected in comparable OCcontent predictions across the study area. Mean OCeontent post prediction
280  was 0.57 +0.58 %, whereas OCcontent pre Was 0.65 + 0.65 (Table 2). However, patterns for OCconeen predictions were
not consistently lower for OCecontent post (Fig. 5). For example, OCcontent post Was predicted to be higher in areas near

the Irish coast and southeast of the Isle of Man (Fig. 5).

Importantly for calculating OC stocks, DBDpost had a better agreement with in situ data compared to DBDyr. (Table
1). DBDyost explained 43% of the variance in the DBD point data across the NW European shelf and had an RMSE
285  of 187 kg m™. Within the study area, DBDjoq largely showed a reduction in DBD across the study area with a
mean reduction of 310 kg m™. In areas of known high mud content such as ‘The Smalls’ and the ‘Mudbelt’, mean

reductions in DBDjoy were even greater (506 kg m™) (Fig. 6).

A substantial difference in predicted total OCsock across the study area was found between the two trained models
(Table 2). Based on OCsock post the total OC reservoir was 46.6 +43.6 Tg in the study area, which was 68.6% (total
290  OCgock = 67.9 £ 63.0 Tg) of the OC reservoir based on OCsck pre (Table 2). Both adjusted and unadjusted
predictions captured similar spatial patterns in OCcontent and OCgiock (Fig. 5 and 7). Both ‘The Western Irish Sea
Mudbelt’ and ‘The Smalls’ had comparatively high OCcontent and OCistock (Fig. 5 and 7). Generally, lower OCecontent
and OCjsck were predicted in deeper central parts of the Irish Sea (Fig. 5 and 7). Improvements to DBD rather
than OCecontent Were shown to have a greater influence on total OC reservoir estimate. Combining OCecontent post With
295  DBD,. reduced the total OC stock estimate by 6.5 Tg, whereas, combining the OCcontent pre With DBDjpogt reduced

the total OC reservoir estimate by 15.1 Tg across the study area.

5 Discussion

Our findings show that bias-adjusted model inputs substantially reduced estimates of organic carbon (OC) stock
in surficial sediments within the Irish Sea by almost one-third (31.4%). Adjusted inputs showed better alignment
300 with in situ measurements and predictions for OCcontent post and DBDyost had lower error compared to predictions
using non-adjusted inputs. Our results show that RF modelling of DBD data, instead of modelling DBD as a
function of porosity, led to the greatest reductions in OC stock estimates. These findings suggest that previous
wider-scale modelling efforts of OC stock, which modelled DBD from porosity, might have overestimated OC
stock. Moreover, these findings highlight the need to reduce uncertainties in model inputs to improve predictions
305 and make model outputs more robust to support policy makers and marine planning decisions. Our study
contributes to the refinement of spatial models for predicting marine sediment OC stocks by using improved

predictors and inputs.

Approximately two-thirds (70.1%) of the difference in OC stock estimates between the two estimates (OCsiock pre

vs. OCitock post) Was attributed to adjustments in DBD and the remaining difference was due to adjustments in OC

9
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310 content model predictions. DBD,,s showed reduced error, compared to DBD,. and revealed consistently lower
DBD values across the study area, resulting in lower OC stock estimates (DBDpost mean 1191 £ 175 kg m;
DBDjy mean: 1501 + 65kg m™). Apart from recent work which used a machine learning model to estimate DBD
(Diesing et al., 2024), previous work has largely focused on accurately modelling OC content estimates, with less
attention being given to DBD estimates (Diesing et al., 2017, 2021; Smeaton et al., 2021). For example, previous
315 work has modelled DBD from porosity as was performed in the OCjsiock pre model developed for the current study.
Modelling DBD in this way does not utilize in situ measurements of DBD and reductions in DBDpost RMSE
compared to DBDy. in the current study suggests that modelled DBD from porosity may also be less accurate
than RF modelling. Additionally, Atwood et al. (2020) used a transfer function to estimate DBD from OC content,
however, the transfer function was not based solely on marine sediment data and contained OC content values
320 substantially greater than those observed on continental shelves. Previous research has shown that OC storage
dynamics varies from inland to coastal to shelf sediments (Smeaton et al. 2021). Our findings suggest that
modelling DBD from porosity may tend to overestimate DBD estimates, especially in high mud content areas.
These findings highlight the importance of reducing uncertainties around DBD and reinforces prior suggestions
for standardized measurement protocols, particularly regarding DBD, which influences OC stock estimates

325 (Graves et al., 2022).

Previous research has consistently highlighted mud (the sum of silt and clay) content (Cinua), as a critical predictor
of OC content (Diesing et al., 2017; Smeaton et al., 2021). In agreement with previous work, OCecontent post indicated
that Cinug Was the most important predictor of OCcontent. Muds across fjords and coastal sediments have been shown
to contain greater amounts of OC than sand, coarse and mixed sediments (Smeaton et al., 2021). The clay fraction
330  in marine muds offers a large surface area for the adsorption and preservation of organic matter, making it a key
factor in OC sequestration (Babakhani et al., 2025; Keil and Hedges, 1993). The capacity for sediments to bind
OC through clay-OC interactions can also vary with different mineral phases occurring in sediments, varying in
the surface charge and distribution, topography and particle size and subsequent geochemical conditions
constraining these characteristics (e.g. pH and ionic strength of pore water) (Kleber et al., 2021). (Bruni et al.,

335 2022)(Hunt et al., 2020; Smeaton and Austin, 2019)

Despite our dataset showing a largely positive relationship between Cimug and OCeontent, €xtremely low Cpug values
(<0.05% Cmua) were also associated with high OCecontent, Which is in contrast to previous work reporting positive
relationship between Cmug and OCecontent (Diesing et al., 2017; Smeaton et al., 2021). In continental shelves
relationships between mud and OContent are complex. Previous work has shown little variation in OCeontent between
340 mud, sand and coarse sediments on shelf areas (Smeaton et al., 2021). However, the lability of organic matter can
vary significantly between these environments (Smeaton and Austin, 2022). Marine muds have been shown to
store organic matter ranging from highly reactive to highly resistant to degradation, whilst coarser sediments have
been shown to almost exclusively house organic matter highly resistant to degradation (Smeaton and Austin,
2022). Furthermore, muddy sediments tend to be sites of relatively high infaunal biomass and these benthic fauna
345 in combination with microbial metabolism play a key role in mediating OC mineralisation and preservation (Lin
et al., 2022). For example, Zhang et al. (2024)estimated bioturbation-induced remineralisation to account for
between 25 and 30 % of total seabed respiration. These biological processes act alongside sediment disturbance

from commercial fishing to create this nuanced relationship between mud and organic matter content (Epstein and
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Roberts, 2022; Zhang et al., 2024). This may explain why the mud partial plot did not exhibit a clear positive

350 relationship, as the heterogeneity in organic matter lability can affect OC storage capacity.

In addition, the importance of WOV max in our model highlights the role of hydrodynamic conditions in shaping
OC content and stocks. The inverse relationship between OC content and WOV o found by the current study is
in agreement with previous work that demonstrated lower OC accumulation rates are associated with
environments with increased hydrodynamic activity (Song et al., 2022). These regions, characterized by thick
355 Sediment Mixed Layers (SML), experience more frequent sediment resuspension, which limits OC accumulation.
These mixing regimes facilitate the repeated suspension of fine sediment particles with varying densities and
exposure of associated organic matter to oxygen, potentially increasing remineralization and reducing organic
carbon accumulation rates (Song et al., 2022). Several knowledge gaps remain regarding the processes governing
carbon mineralization in marine sediments, particularly in dynamic coastal regions. First, the mechanistic
360 interplay between sediment resuspension, microbial community activity, and carbon mineralization pathways
remains poorly constrained (LaRowe et al., 2020). While oxygen exposure time is a key driver of OC degradation
(Hartnett et al., 1998), the extent to which short-term disturbance events (e.g. storms or trawling) alter oxygen
penetration depth and thus carbon remineralization rates need further investigation (Bartl et al., 2025; Glud, 2008).
Additionally, the interaction between bioturbation — a critical process mixing particulate organic matter — and
365 resuspension driven transport of sediments across spatial scales is not well quantified in models predicting carbon
storage (Cozzoli et al., 2019). The hydrodynamic regime has a strong influence over sediment type, as high energy
environments prevent mud deposition or resuspend finer particles, while low energy environments allow fine
sediments to settle and accumulate, which is conducive to mud deposition and OC accumulation (Hanebuth et al.,
2015). Similar findings were reported by Diesing et al. (2017), where low hydrodynamic activity was positively
370 correlated with OC content. These insights, coupled with the present work, underscore the need to incorporate
sediment dynamics, such as sediment mixing or disturbance, into models predicting OC stock, particularly in light

of human activities such as trawling and offshore development (Epstein and Roberts, 2022)

Diesing et al. (2017), Smeaton et al. (2021) and Atwood et al. (2020) all reported better model accuracy compared
to those in the present study. For example, Diesing et al. (2017) and Atwood et al. (2020) reported R? values of
375 75% and 76%, respectively. Despite OCcontent post Showing improved performance compared to OCcontent pre and OC
stock input data (predictors and DBD) showed reduced error, model performance reported here is lower when
compared to previous studies investigating OCjqck in marine sediments. These apparent differences in model
performance may be due to the validation approach used and spatial autocorrelation, which may be inflating model
metrics (Mila et al., 2022). For example, the present study used the KNNDM algorithm to ensure spatial
380 independence between cross validation training folds, which ensures that for each train/test fold, data that are
tested on are spatially independent of test data. However, random k fold cross validation, as used by Atwood et
al. (2020) and Diesing et al. (2017), are likely to train and test on data that are spatially dependant, and thus
artificially increasing the likelihood of the model predicting correctly (Mila et al., 2022). Similarly, Smeaton et
al. (2021) who did use a form of spatial cross validation reported comparable model performance to our study
385 (R?=53%, RMSE=1.72). Smeaton et al. (2021) used ‘spatial blocks’ to determine train/test splits. However, these
spatial blocks were defined as ICES statistical grids, which do not ensure spatial independence between train/test

folds, unlike the KNNDM algorithm used in the present study.
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Reducing model error through adjusting model input data, predictions presented here still carry uncertainty. Even
though prediction uncertainty estimates were performed, there is still more uncertainty that could not be
390 quantified. The data that was sourced was not all recorded uniformly, and some components were unavailable.
For example, uncertainty in OC content data was not reported, thus we were unable to propagate those
uncertainties into final OC content and OC stock uncertainty predictions. This was also true for predictor data.
Thus, uncertainties in measured OC content and predictor data could not be included in final model uncertainty
estimates. In addition, DBD data were lacking across the study area and only 3% (18 of 642) of all DBD
395 observational data used in bias adjustment were located within the study area. However, despite this, DBD
estimates presented here have reduced error when compared to observational data across the Northwest European
shelf when compared to estimates from porosity. Findings from the present study show spatial models of organic
carbon can still be significantly improved from increased in situ data. Additionally, incorporating these datasets
into public repositories can improve efforts to estimate organic carbon stocks by providing ground truthed data on

400  which to base numerical models.

6 Conclusion

Overall, our findings suggest that marine sedimentary OC stocks could be lower than previously estimated, a
conclusion with important implications for seabed management. The findings suggest that adjusting model inputs
based on in situ data, may help reduce uncertainties in model predictions. We highlight the critical role that
405 accurate DBD estimates play in determining OC stock. Moving forward, more comprehensive in situ DBD
measurements and refined DBD models are essential for improving the accuracy of OC stock predictions.
Alternatively, OC stocks could be calculated directly per sediment core, reducing the number of models needed
to estimate OC stocks, thus reducing uncertainty in final estimates. These efforts will be instrumental in

developing better strategies for managing marine sedimentary OC stocks.
410  Code/Data availability

Spatially modelled organic carbon content, stock data, and their associated uncertainties are available as a Zenodo
repository (https://doi.org/10.5281/zenodo.14859982). Additionally, the bias adjusted predictor data layers
developed and the random forest dry bulk density model can be accessed from Zenodo
(https://doi.org/10.5281/zenodo.14859982). The underlying code used to develop these data layers and produce

415 spatial predictions of organic carbon content and stock is available from the “Bias-Adjusted Predictors and
Random  Forest Models for  Organic  Carbon  Stock  Estimation”  github  repository
(https://github.com/markchatting/Bias- Adjusted-OC-Stock-Model.git).
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Tables and Figures

Table 1: Summary of organic carbon content and stock model inputs. Directly sourced adjustments were when
the adjusted data was soured directly from literature that developed a model based on locally measured
observational data. SPM data points were for all months to create monthly interpolated surfaces then they were
merged to create seasonal interpolated surfaces. ARMSE represents the change in RMSE after QQ mapping.
Negative RMSE values represent reduced error, while positive RMSE values show increased error.

NWE shelf

. . ARMSE
Predictor Unit Abbreviation Pre adjustment dz.ata Adjustment after
source points method diust ¢
available adjustmen
Distance to coast km - Ca‘ljculatec! from - None -
ata points
Bathymetry m - EMODNet - None -
Copernicus
Bottom water salinity - BWS marine data 57,965 QQ mapping -0.01
portal
Copernicus
Bottom water temperature °C BWT marine data 173,607 QQ mapping 0.00
portal
Copernicus
Mean bottom water velocity ms’! BWViean marine data - Averaging -
portal
Copernicus
Maximum bottom water velocity ms’' BWV marine data - Averaging -
portal
Copernicus
Surface chlorophyll-a pgl! - marine data 21,108 QQ mapping -1.13
portal
Copernicus
Summer surface Suspended o . « .
Particulate Matter mg | SPMummer marine data 542 QQ mapping +2.31
portal
. Copernicus
Winter surface Suspended 0 . . .
Particulate Matter mg | SPMyinter marine data 542 QQ mapping -0.85
portal
Mitchell et al. .
0, - -
Mud content % Cinud (2019) Averaging 0.03
Mitchell et al. .
o - N
Sand content % Caand (2019) Averaging 0.05
Mitchell et al. .
0, - -
Gravel content % Coravel (2019) Averaging 0.03
Mean wave orbital velocity at 1 Wilson et al. Directly
seafloor ms WOVinean (2018) B sourced B
Maximum wave orbital velocity q Wilson et al. Directly
at seafloor ms WOV (2018) B sourced B
Modelled from Random
Dry bulk density kg m? DBD modelled 706 forest -194.73
porosity modelling

Table 2: Summary of outputs from models trained on non-bias adjusted data (predictors.) and bias adjusted
data (predictorspost). Mean OCeontent Tepresents the mean prediction value across the study area; total reservoir
estimate is the total OC stock reservoir for the study area; mean DBD is the mean DBD predicted across the

study area. R?> and RMSE (Root Mean Squared Error) represent performance metrics used in model selection

process.
Total reservoir OC estimate
3 0
Input data Mean DBD (kg m?3) + sd Mean OCcontent (%0) + sd (Tg) * total uncertainty
Predictorspre 1501.60 + 66 0.65 +0.62 67.9+62.9
Predictorspost 1191 +175 0.57+0.58 46.6 £ 43.6

18



https://doi.org/10.5194/egusphere-2025-661
Preprint. Discussion started: 7 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Montent pre

(S_a)gstqck pre

s6'N- S~

(1) Response data i
s A (Za[PredlctorspLe

6b ocssock post

&

5\4;'  °
' 1)':“‘
l\ ;'&\

Wosw e s

Figure 1: Summary of steps taken to train and predict form two different models, which include: 1) collating
response data; 2a) compiling OC content predictor data (predictorsp); 3a) training a random forest model to
predict OC content on the non-adjusted predictor data (OCpr); 4a) modelling Dry Bulk Density (DBD) from
porosity (DBDyr); Sa) predicting OC stock across the study area using OCpr and DBDy,; 2b) bias adjusting
predictorsp data using quantile-quantile mapping; 3b) compiling OC content predictor data after it has been bias
adjusted (OCecontent post); 4b) training a random forest model to predict OC content on the bias adjusted predictor
data (predictorspost); Sb) training a random forest model to predict DBD on the bias adjusted predictor data
(DBDyost); 6) predicting OC stock across the study area using OCpost and DBDpost.
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Figure 2: Study area within the Irish Sea (thin black border) and within the greater North West European shelf
(inset). Points indicate organic carbon (OC) data coloured by the organic carbon content. Pink areas show
internal waters that have been excluded from the study area. Thick black outlined polygons indicate the
‘Mudbelt’ (northern) and the ‘Smalls’ (southern), areas of known high mud content within the Irish Sea.
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Figure 3: Cumulative distribution functions (CDF) of bias adjusted (adjusted) and not bias adjusted (modelled)
model input data and observational data used in bias adjustment.
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Figure 4: Partial dependence plots showing the relationship between a) OC content and non-bias adjusted
model predictors selected by Forward Feature Selection (FFS): surface chlorophyll-a, surface summer
suspended particulate matter, maximum wave orbital velocity at the seafloor; gravel content and bottom water
salinity; b) bias adjusted predictors selected by FFS: bathymetry, mud content, surface chlorophyll-a, distance to
the nearest coast and maximum wave orbital velocity at the seafloor and; c) bias adjusted predictors and dry
bulk density (DBD) selected by FFS: surface winter suspended particulate matter, maximum wave orbital
velocity at the seafloor, surface summer suspended particulate matter, mud content, surface chlorophyll-a and
distance to the nearest coast.
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Figure 5: a) Predicted organic carbon (OC) content using adjusted model inputs; b) the associated uncertainty
and c) difference between not bias adjusted and bias adjusted predictions across the study area (difference =
OCeontent pre — OCeontent post). Negative values indicate where predictions with adjusted model inputs were higher
than non-bias adjusted inputs.
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Figure 6: a) Predicted dry bulk density (DBD) content using adjusted model inputs; b) the associated uncertainty
and c) difference between DBD modelled from porosity and using an RF (DBDye - DBDjost). Negative values
indicate where predictions with adjusted model inputs were higher than non-bias adjusted inputs.
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Figure 7: a) Predicted organic carbon (OC) stock using adjusted model inputs; b) the associated uncertainty and
¢) difference between not bias adjusted and bias adjusted predictions across the study area (difference = OCgock
pre — OCstock post). Negative values indicate where predictions with adjusted model inputs were higher than non-
bias adjusted inputs.
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