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Abstract. Continental shelves are critical for the global carbon cycle, storing substantial amounts of organic 

carbon (OC) over geological timescales. Shelf sediments can also be subject to considerable anthropogenic 15 

pressures, offshore construction and bottom trawling for example, potentially releasing OC that has been 

sequestered into sediments. As a result, these sediments have attracted attention from policy makers regarding 

how their management can be leveraged to meet national emissions reductions targets. Spatial models offer 

solutions to identifying organic carbon storage hotspots; however, data gaps can reduce their utility for practical 

management decisions. Regional spatial models of OC often use global scale predictors which may have biases 20 

on regional scales. Moreover, dry bulk density (DBD), an important factor in calculating OC stock from sediment 

OC content, has comparatively few data points globally. We compared two spatial models of OC stock in the Irish 

Sea, one using unadjusted predictors and a previously used method to estimate DBD, and another incorporating 

bias-adjusted predictors, from in situ data, and a machine learning-based DBD model, to assess their relative 

performance. The adjusted model predicted a total OC reservoir of 46.6 ± 43.6 Tg within the Irish Sea, which was 25 

31.4% lower compared to unadjusted estimates. 70.1% of the difference between adjusted and unadjusted OC 

stock estimates was due to the approach for estimating DBD. These findings suggest that previous models may 

have overestimated OC reservoirs and emphasizes the influence of accurate DBD and predictor adjustments on 

stock estimates. These findings highlight the need for increased in situ DBD measurements and refined modelling 

approaches to enhance the reliability of OC stock predictions for policy makers. This study provides a framework 30 

for refining spatial models and underscores the importance of addressing uncertainties in key parameters to better 

understand and manage the carbon sequestration potential of marine sediments. 
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1 Introduction 

Continental shelves are important sinks of atmospheric carbon dioxide and play a key role in the global carbon 35 

cycle (Frankignoulle and Borges, 2001). Marine sediments in these environments store substantial amounts of 

organic carbon (OC) over millennia (Hage et al., 2022; Laruelle et al., 2018). Effective management of these 

natural long-term stores of OC has the potential to offer policy makers a mechanism to offset emissions. As a 

result, nature-based solutions to mitigating anthropogenic greenhouse gas emissions have received much scientific 

interest in recent years (Griscom et al., 2017). For example, coastal vegetated habitats store >30 Pg of OC globally 40 

and management of these habitats is thought to have the potential to offset approximately 3% of annual global 

greenhouse gas emissions (Macreadie et al., 2021). Global estimates of OC stocks in continental shelf sediments 

are up to nine times that of coastal vegetated habitats (between 256 to 274 Pg) (Atwood et al., 2020) and while 

still heavily debated, emissions from human pressures on marine sediments are thought to be substantial (Hiddink 

et al., 2023; Sala et al., 2021). Despite their large capacity to store OC, efforts to quantify stocks and potential 45 

emissions reductions from management are relatively recent (Diesing et al., 2017; Epstein et al., 2024; Smeaton 

et al., 2021). Subcontinental and national scale OC stock estimates have been undertaken, for example Diesing et 

al. (2017) reported that the Northwest European continental shelf contained between 230 and 880 Tg OC stored 

in the uppermost 10 cm of the sediment column and Smeaton et al. (2021) estimated that between 456 and 592 

Tg of OC were stored in surficial (0 – 10 cm) marine sediments within the United Kingdom Exclusive Economic 50 

Zone. 

Despite advancements in understanding OC storage in marine sediments, data and knowledge gaps remain. One 

such data gap is that of marine sediment Dry Bulk Density (DBD). DBD represents the mass of dry sediment 

within a given volume of wet sediment, which is multiplied by OC content and sediment depth to calculate an 

mass of OC per unit of s area, which is the OC stock (Taalab et al., 2013). DBD is a scaling factor on OC content 55 

and adjusts the OC content in a given volume based on the density of sediment, altering OC stock estimates. Thus, 

DBD has a significant effect on OC stock estimates. Previous estimates of OC stocks in terrestrial soils suggest 

much of the uncertainty in overall stock estimates results from uncertainty in sediment density (Dawson and 

Smith, 2007). Despite the importance of DBD in calculating OC stock, however, there remains a lack of direct 

measurements for marine sediments. For example, Atwood et al. (2020) compiled a global database of ~12,000 60 

sediment cores to predict global OC stocks and over two-thirds (69%) of their data were lacking DBD 

measurements.  

Subcontinental predictions of OC content are frequently based on global environmental predictors, which may 

contain biases when applied to regional or smaller scales (Galmarini et al. 2019). As a result, applying bias 

adjustments to model input data to align better with observational data is common practice in other scientific 65 

disciplines, for example localised climate modelling and agricultural impact assessments (Laux et al., 2021; Luo 

et al., 2018). Bias adjustments are an important component of climate modelling to reduce systematic errors in 

model outputs, ensuring that projections match local conditions and are reliable for practical applications (Laux 

et al., 2021). Bias adjustments have been used to improve climate model utility in agricultural impact assessments, 

such as predicting planting dates and crop suitability in water-limited regions; to correct overestimations in soil 70 

moisture models and to improve predictions in sea ice thickness (Laux et al., 2021; Lee and Im, 2015; Mu et al., 
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2018). These studies collectively highlight that bias adjustments are essential for improving the precision and 

applicability of climate model outputs across different environmental contexts, however, their ability to adjust 

predictions of marine sediment OC stocks has not been investigated. 

Public data repositories provide an opportunity to use data gathered over large spatial scales not practical to collect 75 

over short- and medium-term research projects (Mitchell et al., 2019). Ocean and earth sciences data, in particular, 

lend themselves to being collated across research groups and sampling expeditions. Much of the instrumentation 

and parameters measured are the same, for example temperature and salinity. In order to perform bias adjustments 

of globally modelled data, large datasets of parameters of interest are required (Laux et al., 2021). Public 

repositories, for example, the Pangaea repository of datasets (Felden et al., 2023), the International Council for 80 

the Exploration of the Seas (ICES) data centre (https://www.ices.dk/data/Pages/default.aspx) and national 

repositories such as Ireland’s Marine Institute offer large amounts of ocean data which can be used to perform 

localised bias adjustments. Additionally, data specifically useful for spatial modelling of marine sedimentary OC 

stock, for example OC content and DBD is available from the Modern Ocean Sediment Archive and Inventory of 

Carbon (MOSAIC) (Paradis et al., 2023; Paradis and Eglinton, 2024). 85 

This study aimed to determine whether bias adjusted model predictors and improved estimates of DBD could be 

used to improve estimates of OC stock within the Irish Sea. To address this question, the estimates of two spatial 

models to predict OC stock in surficial sediments in the Irish Sea were contrasted. The first model was developed 

using un-adjusted predictors and a widely used DBD model (Diesing et al., 2017, 2021; Smeaton et al., 2021) to 

estimate OC stock from OC content; and the second model was developed by bias adjusting and downscaling 90 

predictors using observational data and a machine learning spatial model of DBD (Fig. 1). 

2 Regional setting 

The Irish Sea is a shallow continental shelf sea between the land masses of the island of Ireland and Great Britain, 

with an average water depth of 60 m and a maximum depth of approximately 315 m (Fig. 2). The area has a 

complex geological history of previous glaciation coupled with marine transgression, and so the seafloor in this 95 

area consists of a mosaic of sediment types and bedforms (Arosio et al., 2023; Scourse et al., 2019; Ward et al., 

2015). At present, a combination of wave and tidal current action results in a significant amount of sediment being 

mobilised and transported within the region (Coughlan et al., 2021). Previous studies in mapping organic carbon 

stocks for this region have either been coarsely resolved as part of a wider geographical study or limited to parts 

of the Irish Sea (Diesing et al., 2017; Smeaton et al., 2021; Wilson et al., 2018) (Crowe et al., 2023) 100 

 

The study area detailed here covers a marine area of 75,229 km2 and spans latitudes 50N to 56N and longitudes 

8W to 2W (Fig. 2). OC content (%) (OCcontent) and OC stock (OCstock) were estimated within the study area, 

excluding areas within inshore waters (Smeaton et al., 2021). The inshore area excluded from the study area was 

defined by the Maritime Boundaries Geodatabase (Maritime Boundaries Geodatabase: Internal Waters, version 4. 105 

). 
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3 Methods 

3.1 Organic carbon content data 

Direct measurements of sediment OCcontent were obtained from various sources, including published scientific 

literature, governmental organizations, as well as a private organization (Supplementary information S1). Only 110 

OCcontent data from the top 10 cm of the sediment profile were included in the analysis as the aim of the study was 

to estimate surficial sediment OCcontent and OCstock. Data that reported Loss on Ignition (LOI) were converted to 

OCcontent using Eq. (1) (Grey et al., 2024): 

𝑂𝐶𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 𝐿𝑂𝐼 × 0.51 + 0.11,          (1) 

This conversion equation was locally developed on Irish Sea OCcontent to LOI ratios where OCcontent was measured 115 

using an elemental analyser. 

OCcontent data points were spatially aggregated to match the spatial resolution of the finest resolution model 

predictor, which was EMODNet bathymetry (approximately 155 m by 230 m cell size) later used in model 

training. When multiple response data points fell within a single grid cell, the mean was calculated, giving one 

value per grid cell. 120 

3.2 Predictor data 

3.2.1 Data for bias correction 

To compare two spatial models for predicting OCcontent, two predictor datasets were developed: pre-adjustment 

predictors (predictorspre) and post-adjustment predictors (predictorspost) (Table 1). Potential model predictors were 

selected based on their anticipated relevance to OCcontent (Diesing et al., 2017, 2021). Predictorspre were sourced 125 

from a variety of governmental organizations and published scientific literature (Table 1). Detailed descriptions 

of predictorspre are provided in the supplementary methods. 

As global scale models can have biases on regional scales (Casanueva et al., 2018, 2020; Galmarini et al., 2019; 

Roberts et al., 2019), predictorspost data were developed by regionally bias adjusting and downscaling predictorspre 

data using in situ measurement data. Observation data from the Northwest European Shelf, rather than just the 130 

study area (Irish Sea) were used to maximize the data available for bias adjustment, resulting in regionally bias 

adjusted predictorspost data. Observational data used to bias adjust predictorspre were sourced from public 

repositories: Pangaea (www.pangaea.de), The Marine Institute 

(https://erddap.marine.ie/erddap/tabledap/IMI_CTD.html) and MOSAIC (Paradis et al., 2023; Paradis and 

Eglinton, 2024) and temporally aligned with inputspre data. More detail of the observational data is provided in 135 

supplementary methods. 

3.2.2 Bias adjustment 

Depending on data availability, different approaches were used to bias adjust predictorspre. Bottom water 

temperature (BWT), bottom water salinity (BWS), mean and maximum bottom water velocities (BWVmean and 

BWVmax), surface chlorophyll-a, summer surface suspended particulate matter (SPMsummer) and winter surface 140 
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suspended particulate matter (SPMwinter) all followed a quantile-quantile (QQ) mapping bias adjustment approach 

(Casanueva et al. 2020). First, point observational data were harmonized with predictorspre data, which were 

spatially continuous averages over several years. Briefly, observation data, which represent a measurement at one 

point in time and space, were smoothed across time and space (Cheng et al., 2017, 2020; Cheng and Zhu, 2016). 

A spatially continuous interpolated surface was then created from the smoothed data (Cheng et al., 2017, 2020; 145 

Cheng and Zhu, 2016). Original predictorspre data were then adjusted using the interpolated surface by QQ 

mapping. QQ mapping bias adjusted models have been shown to outperform un-adjusted models (Ngai et al., 

2017), and are commonly used as they preserve the trends in the original model, but adjust predictions’ distribution 

to better align with in situ measurements (Ngai et al., 2017). More detail of the QQ mapping approach is provided 

in supplementary methods. 150 

Since multiple models for sediment properties—mud, sand, and gravel content—exist in the study area (Mitchell 

et al., 2019; Stephens and Diesing, 2015; Wilson et al., 2018), they were averaged. Previous research has shown 

averaging multiple models can reduce error (Dormann et al., 2018). However, as sediment data are proportional, 

bounded by 0 and 1 and their sum must equal 1, prior to averaging mud, sand and gravel content, additive log 

ratio (ALR) transformations were applied using Eq. 2 and Eq. 3 (Mitchell et al., 2019): 155 

𝐴𝐿𝑅𝑚 = log⁡(
𝑚𝑢𝑑

𝑔𝑟𝑎𝑣𝑒𝑙
),          (2) 

𝐴𝐿𝑅𝑠 = log⁡(
𝑠𝑎𝑛𝑑

𝑔𝑟𝑎𝑣𝑒𝑙
),          (3) 

ALRm and ALRs were then averaged across the three different models (Mitchell et al., 2019; Stephens and Diesing, 

2015; Wilson et al., 2018) and then back transformed to compositional data using the following Eq. 4, Eq. 5 and 

Eq. 6 (Mitchell et al., 2019): 160 

𝑚𝑢𝑑 =
exp⁡(𝐴𝐿𝑅𝑚)

exp(𝐴𝐿𝑅𝑚)+exp(𝐴𝐿𝑅𝑠)+1
,         (4) 

𝑠𝑎𝑛𝑑 =
exp⁡(𝐴𝐿𝑅𝑠)

exp(𝐴𝐿𝑅𝑠)+exp(𝐴𝐿𝑅𝑚)+1
,         (5) 

𝑔𝑟𝑎𝑣𝑒𝑙 = 1 − (𝑚𝑢𝑑 + 𝑠𝑎𝑛𝑑),         (6) 

Mud, sand and gravel outputs above represented the final adjusted mud, sand and gravel predictors used in 

predictorspost. 165 

Adjusted current and wave orbital velocities at the sea floor were sourced directly from scientific literature as 

these models were locally developed using in situ measurements (Coughlan et al., 2021). Distance to coast was 

not adjusted as it is a simple calculation of the geographical distance for each data point to the nearest coast. 

Bathymetry was also not adjusted as only the EMODNet bathymetry model was used. EMODNet bathymetry 

offers the highest resolution and was developed specifically for European waters (https://emodnet.ec.europa.eu/). 170 
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3.2.3 Validation of predictorspost 

Predictorspost were validated against observation data to assess whether the adjustment improved their agreement 

with in situ data. To avoid artificial skill, a k fold cross-validation approach was employed, ensuring that the 

validation was conducted on data not used in the bias adjustment process (Maraun and Widmann, 2018). 

Specifically, the bias adjustment was performed five times, each time excluding a different non-overlapping fifth 175 

of the observation data. For each fold, the Root Mean Squared Error (RMSE) was calculated for the bias-adjusted 

predictor using the observation data that had been omitted from the adjustment process. RMSE represents the 

difference between a model’s predictions and observational data and is a commonly used metric to test model 

performance (Milà et al., 2022). Lower RMSE values represent improvements in model performance. This was 

repeated across all folds, and the mean RMSE was used to represent the overall RMSE. This overall RMSE was 180 

then compared to the RMSE of predictorspre to determine whether bias adjustments improve predictor accuracy 

(Maraun and Widmann, 2018). 

3.2.4 Dry bulk density 

DBD is the mass of dry sediment within a given volume of wet sediment and is required to calculate OCstock from 

OCcontent. While it is not a predictor for modelling OCcontent, it is crucial in calculating OCstock. Therefore, two 185 

versions of DBD were developed, one un-adjusted and one adjusted to be later combined with unadjusted and 

adjusted OC content predictions, respectively. Unadjusted DBD (DBDpre) was modelled from sediment porosity 

using Eq. 7, Eq. 8 and Eq. 9 (Diesing et al., 2017; Smeaton et al., 2021): 

𝐷𝐵𝐷⁡𝑘𝑔⁡𝑚−3 = (1 − 𝜙)𝜌𝑠,         (7) 

𝜌𝑠 = 2650⁡𝑘𝑔⁡𝑚−3,          (8) 190 

𝜙 = 0.3805⁡ × ⁡𝐶𝑚𝑢𝑑 + 0.42071,         (9) 

Where sediment porosity () was calculated as a function of mud content (Cmud) and assumed a grain density (s) 

of 2650 kg m-3. By contrast, adjusted DBD (DBDpost) was spatially predicted using in situ data from the Northwest 

European Shelf and a Random Forest (Breiman, 2001) model (details in Sect. 3.3.1). 

3.3 Model and spatial prediction 195 

3.3.1 Model training 

Two OCcontent models were trained to compare the effects of using pre-adjustment (OCcontent pre) and bias-adjusted 

(OCcontent post) predictors. The Random Forest (RF) algorithm was used as it has been shown to perform well for 

geospatial modelling (Diesing et al., 2021; Hengl et al., 2015; Meyer et al., 2018). The RF model was trained 

using the Forward Feature Selection (FFS) algorithm to omit unimportant predictors (Meyer et al., 2018). FFS 200 

trains multiple RF’s using all possible 2-predictor combinations. The best of these 2-predictor models is kept, and 

all possible 3-predictor models are trained using the already selected two predictors. The number of predictor 

variables is increased iteratively. Model performance is tested for each additional predictor and the process stops 

when none of the remaining variables decreases the model RMSE (Meyer et al., 2018). After model training, 

partial dependence plots were used to visually inspect the associations between the response data (OCcontent) and 205 
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the predictors deemed to be important by FFS. Additionally, DBDpost was spatially modelled to later calculate 

OCstock from OCcontent. Predictorspost were used to train DBDpost. Similarly to OCcontent, an RF was trained, which 

was implemented using the FFS algorithm. 

3.3.2 Model validation 

All FFS RF models (OCcontent pre, OCcontent post and DBDpost) were validated using the Nearest Neighbour Distance 210 

Matching (NNDM) Leave-One-Out (LOO) Cross Validation (CV) approach (Milà et al., 2022). NNDM LOO CV 

matches the distance distribution functions of training to testing data to the distance distribution function of 

prediction to training data (Supplementary information S1 and S2). This validation approach has been shown to 

produce more reliable estimates of spatial model performance than random k fold CV (Milà et al., 2022). Random 

k fold CV randomly creates train-test splits for model training testing validation, which ignores autocorrelation in 215 

spatial data and carries the high probability data points that are spatially autocorrelated may be used to train and 

test model performance simultaneously. Thus, such an approach is increasing the tendency for model performance 

to be overestimated (Milà et al., 2022). Conversely, NNDM ensures that CV is performed on data that are spatially 

independent of training data. In addition to NNDM LOO CV, the DBDpost RMSE against observational data was 

calculated to determine whether RF modelling to spatially predict DBD (DBDpost) was an improvement compared 220 

to modelling DBD from porosity (DBDpre) (details in Sect. 3.2.3). 

3.3.3 Model uncertainty 

Model uncertainty was calculated for each of the OCcontent models as well as DBDpost. Uncertainty was estimated 

by calculating the standard deviation between 25 Random Forest (RF) predictions (Diesing et al., 2021). Response 

data were divided into 25 folds, each with a 70% to 30% train/test split, resulting in 25 models. For each pixel, 225 

the standard deviation of the 25 predictions was computed. The total uncertainty was then determined by summing 

these standard deviations (Diesing et al., 2021).  

3.4 Calculation of organic carbon stock and total reservoir 

The spatial variation in OCstock, which is the mass of OC stored in sediment per unit of area to a specific depth, 

across the study area was calculated for each set of un-adjusted inputs (OCcontent pre and DBDpre) and adjusted inputs 230 

(OCcontent post and DBDpost) using the following equations (Diesing et al., 2017): 

𝑂𝐶⁡𝑠𝑡𝑜𝑐𝑘𝑝𝑟𝑒 ⁡𝑘𝑔/𝑚
2 =⁡𝑂𝐶𝑐𝑜𝑛𝑡𝑒𝑛𝑡⁡𝑝𝑟𝑒 × 𝐷𝐵𝐷𝑝𝑟𝑒 × 𝑐𝑒𝑙𝑙⁡𝑎𝑟𝑒𝑎 × 𝑑𝑒𝑝𝑡ℎ (Eq. 10) 

𝑂𝐶⁡𝑠𝑡𝑜𝑐𝑘𝑝𝑜𝑠𝑡 ⁡𝑘𝑔/𝑚
2 =⁡𝑂𝐶𝑐𝑜𝑛𝑡𝑒𝑛𝑡⁡𝑝𝑜𝑠𝑡 × 𝐷𝐵𝐷𝑝𝑜𝑠𝑡 × 𝑐𝑒𝑙𝑙⁡𝑎𝑟𝑒𝑎 × 𝑑𝑒𝑝𝑡ℎ (Eq. 11) 

OCcontent and DBD were the predicted values from the final selected OCcontent and DBD models, respectively. Cell 

area was calculated using the cellSize() function in the terra package (Hijmans, 2025) in R. The cellSize() function 235 

calculates the area covered by grid cell in the study area, rather than assuming a constant grid cell size across the 

study area. Depth was assumed to be a constant 0.1 m to estimate surficial sediment OC stock. This equation was 

applied to each grid cell across the study area. 
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Additionally, the total mass of OC to a specific depth within in the entire study area, termed OC reservoir, was 

calculated by summing OC stock (calculated above) for all grid cells in the study area. In order to parse the relative 240 

importance of OCcontent and DBD estimates to the overall OCstock estimate, all possible combinations of bias 

adjusted and non-bias adjusted OC content and DBD models were calculated. 

4 Results 

4.1 Data collation 

4.1.1 Data sourced 245 

A total of 1670 in situ measurements of surficial sediment OCcontent were obtained from various sources within the 

study area (Supplementary information S3). After spatial aggregation of OCcontent data and removing data points 

within the excluded inshore area, 450 data points were available for model training. Observation data availability 

for model predictors varied significantly (Table 1). BWT had more than 300 times the amount of data as SPM, 

the predictor with the lowest amount of legacy data available. DBD had 642 data points across the entire Northwest 250 

European Shelf. 

4.1.2 Predictor improvement: predictorspre vs predictorspost 

Except for SPMsummer and BWT, all predictorspost data showed improved consistency with observation data 

according to RMSE comparisons (Table 1). Therefore, unadjusted SPMsummer and BWT were used in the 

predictorspost dataset for model training. The extent to which predictorspre were adjusted varied (Fig. 3). Mean 255 

adjusted BWS, for example, showed little change in RMSE between predictorspre and predictorspost (Table 1). 

Mean change in BWS was 0.09 psu compared to predictorspre. However, SPMwinter was adjusted to a greater degree. 

Mean change in SPMwinter was -9.97 mg l-1, which is also reflected in a greater shift in SPMwinter’s data distribution 

(Fig. 3). Sediment properties, mud, sand and gravel content were not changed to a large degree (Fig. 3). Mean 

adjusted change from predictorspre to predictorspost in Cmud, Csand and Cgravel were -0.03, 0.07 and -0.04, respectively. 260 

4.2 Random forest modelling 

4.2.1 OCcontent and DBDpost Variable selection 

Different predictors were selected during the OCcontent model training process.  FFS chose five important predictors 

for both OCcontent pre and OCcontent post (Fig. 4). Selected predictors for OCcontent post were Cmud, WOVmax, chlorophyll-

a, bathymetry and distance to coast, of which, Cmud and WOVmax were the most important. OCcontent post’s Mean 265 

Squared Error (MSE) increased by 52.3% and 27.9% when Cmud and WOVmax were respectively removed from 

the model (Supplementary information S4). Partial plots also showed Cmud had a positive relationship with 

OCcontent, while WOVmax was inversely related to OCcontent (Fig. 4). In contrast, predictors selected for OCcontent pre 

were SPMsummer, salinity, chlorophyl-a, WOVmax and Cgravel (Fig. 4). SPMsummer was the most important predictor 

for OCcontent pre, which accounted for a 62.9% increase in the model MSE when removed (Supplementary 270 

information S4). 

Six important predictors were selected by RF FFS for DBDpost (Fig. 4). Important predictors were Cmud, SPMsummer, 

SPMwinter, Cgravel, WOVmax and WOVmean. Cmud, which was inversely related to DBD (Fig. 4) was the most 
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important predictor, resulting in an increase in model RMSE by 44.3% when removed (Supplementary 

information S4). 275 

4.2.2 Model performance and predictions 

OCcontent post (R2=0.61, RMSE=0.31%) showed a slight increase in performance compared to OCcontent pre (Table 2, 

OCcontent post R2  = +0.03 vs. OCcontent pre; OCcontent post RMSE  = -0.01% vs. OCcontent pre). This similarity in 

performance was reflected in comparable OCcontent predictions across the study area. Mean OCcontent post prediction 

was 0.57 ± 0.58 %, whereas OCcontent pre was 0.65 ± 0.65 (Table 2). However, patterns for OCcontent predictions were 280 

not consistently lower for OCcontent post (Fig. 5). For example, OCcontent post was predicted to be higher in areas near 

the Irish coast and southeast of the Isle of Man (Fig. 5). 

Importantly for calculating OC stocks, DBDpost had a better agreement with in situ data compared to DBDpre (Table 

1). DBDpost explained 43% of the variance in the DBD point data across the NW European shelf and had an RMSE 

of 187 kg m-3. Within the study area, DBDpost largely showed a reduction in DBD across the study area with a 285 

mean reduction of 310 kg m-3. In areas of known high mud content such as ‘The Smalls’ and the ‘Mudbelt’, mean 

reductions in DBDpost were even greater (506 kg m-3) (Fig. 6). 

A substantial difference in predicted total OCstock across the study area was found between the two trained models 

(Table 2). Based on OCstock post the total OC reservoir was 46.6 ± 43.6 Tg in the study area, which was 68.6% (total 

OCstock  = 67.9 ± 63.0 Tg) of the OC reservoir based on OCstock pre (Table 2). Both adjusted and unadjusted 290 

predictions captured similar spatial patterns in OCcontent and OCstock (Fig. 5 and 7). Both ‘The Western Irish Sea 

Mudbelt’ and ‘The Smalls’ had comparatively high OCcontent and OCstock (Fig. 5 and 7). Generally, lower OCcontent 

and OCstock were predicted in deeper central parts of the Irish Sea (Fig. 5 and 7). Improvements to DBD rather 

than OCcontent were shown to have a greater influence on total OC reservoir estimate. Combining OCcontent post with 

DBDpre reduced the total OC stock estimate by 6.5 Tg, whereas, combining the OCcontent pre with DBDpost reduced 295 

the total OC reservoir estimate by 15.1 Tg across the study area. 

5 Discussion 

Our findings show that bias-adjusted model inputs substantially reduced estimates of organic carbon (OC) stock 

in surficial sediments within the Irish Sea by almost one-third (31.4%). Adjusted inputs showed better alignment 

with in situ measurements and predictions for OCcontent post and DBDpost had lower error compared to predictions 300 

using non-adjusted inputs. Our results show that RF modelling of DBD data, instead of modelling DBD as a 

function of porosity, led to the greatest reductions in OC stock estimates. These findings suggest that previous 

wider-scale modelling efforts of OC stock, which modelled DBD from porosity, might have overestimated OC 

stock. Moreover, these findings highlight the need to reduce uncertainties in model inputs to improve predictions 

and make model outputs more robust to support policy makers and marine planning decisions. Our study 305 

contributes to the refinement of spatial models for predicting marine sediment OC stocks by using improved 

predictors and inputs. 

Approximately two-thirds (70.1%) of the difference in OC stock estimates between the two estimates (OCstock pre 

vs. OCstock post) was attributed to adjustments in DBD and the remaining difference was due to adjustments in OC 
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content model predictions. DBDpost showed reduced error, compared to DBDpre and revealed consistently lower 310 

DBD values across the study area, resulting in lower OC stock estimates (DBDpost mean 1191 ± 175 kg m-3; 

DBDpre mean: 1501 ± 65kg m-3). Apart from recent work which used a machine learning model to estimate DBD 

(Diesing et al., 2024), previous work has largely focused on accurately modelling OC content estimates, with less 

attention being given to DBD estimates (Diesing et al., 2017, 2021; Smeaton et al., 2021). For example, previous 

work has modelled DBD from porosity as was performed in the OCstock pre model developed for the current study. 315 

Modelling DBD in this way does not utilize in situ measurements of DBD and reductions in DBDpost RMSE 

compared to DBDpre in the current study suggests that modelled DBD from porosity may also be less accurate 

than RF modelling. Additionally, Atwood et al. (2020) used a transfer function to estimate DBD from OC content, 

however, the transfer function was not based solely on marine sediment data and contained OC content values 

substantially greater than those observed on continental shelves. Previous research has shown that OC storage 320 

dynamics varies from inland to coastal to shelf sediments (Smeaton et al. 2021). Our findings suggest that 

modelling DBD from porosity may tend to overestimate DBD estimates, especially in high mud content areas. 

These findings highlight the importance of reducing uncertainties around DBD and reinforces prior suggestions 

for standardized measurement protocols, particularly regarding DBD, which influences OC stock estimates 

(Graves et al., 2022).  325 

Previous research has consistently highlighted mud (the sum of silt and clay) content (Cmud), as a critical predictor 

of OC content (Diesing et al., 2017; Smeaton et al., 2021). In agreement with previous work, OCcontent post indicated 

that Cmud was the most important predictor of OCcontent. Muds across fjords and coastal sediments have been shown 

to contain greater amounts of OC than sand, coarse and mixed sediments (Smeaton et al., 2021). The clay fraction 

in marine muds offers a large surface area for the adsorption and preservation of organic matter, making it a key 330 

factor in OC sequestration (Babakhani et al., 2025; Keil and Hedges, 1993). The capacity for sediments to bind 

OC through clay-OC interactions can also vary with different mineral phases occurring in sediments, varying in 

the surface charge and distribution, topography and particle size and subsequent geochemical conditions 

constraining these characteristics (e.g. pH and ionic strength of pore water) (Kleber et al., 2021). (Bruni et al., 

2022)(Hunt et al., 2020; Smeaton and Austin, 2019) 335 

Despite our dataset showing a largely positive relationship between Cmud and OCcontent, extremely low Cmud values 

(<0.05% Cmud) were also associated with high OCcontent, which is in contrast to previous work reporting positive 

relationship between Cmud and OCcontent (Diesing et al., 2017; Smeaton et al., 2021). In continental shelves 

relationships between mud and OCcontent are complex. Previous work has shown little variation in OCcontent between 

mud, sand and coarse sediments on shelf areas (Smeaton et al., 2021). However, the lability of organic matter can 340 

vary significantly between these environments (Smeaton and Austin, 2022).  Marine muds have been shown to 

store organic matter ranging from highly reactive to highly resistant to degradation, whilst coarser sediments have 

been shown to almost exclusively house organic matter highly resistant to degradation (Smeaton and Austin, 

2022). Furthermore, muddy sediments tend to be sites of relatively high infaunal biomass and these benthic fauna 

in combination with microbial metabolism play a key role in mediating OC mineralisation and preservation (Lin 345 

et al., 2022). For example, Zhang et al. (2024)estimated bioturbation-induced remineralisation to account for 

between 25 and 30 % of total seabed respiration. These biological processes act alongside sediment disturbance 

from commercial fishing to create this nuanced relationship between mud and organic matter content (Epstein and 
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Roberts, 2022; Zhang et al., 2024). This may explain why the mud partial plot did not exhibit a clear positive 

relationship, as the heterogeneity in organic matter lability can affect OC storage capacity. 350 

In addition, the importance of WOVmax in our model highlights the role of hydrodynamic conditions in shaping 

OC content and stocks. The inverse relationship between OC content and WOVmax found by the current study is 

in agreement with previous work that demonstrated lower OC accumulation rates are associated with 

environments with increased hydrodynamic activity (Song et al., 2022). These regions, characterized by thick 

Sediment Mixed Layers (SML), experience more frequent sediment resuspension, which limits OC accumulation. 355 

These mixing regimes facilitate the repeated suspension of fine sediment particles with varying densities and 

exposure of associated organic matter to oxygen, potentially increasing remineralization and reducing organic 

carbon accumulation rates (Song et al., 2022). Several knowledge gaps remain regarding the processes governing 

carbon mineralization in marine sediments, particularly in dynamic coastal regions. First, the mechanistic 

interplay between sediment resuspension, microbial community activity, and carbon mineralization pathways 360 

remains poorly constrained (LaRowe et al., 2020). While oxygen exposure time is a key driver of OC degradation 

(Hartnett et al., 1998), the extent to which short-term disturbance events (e.g. storms or trawling) alter oxygen 

penetration depth and thus carbon remineralization rates need further investigation (Bartl et al., 2025; Glud, 2008). 

Additionally, the interaction between bioturbation – a critical process mixing particulate organic matter – and 

resuspension driven transport of sediments across spatial scales is not well quantified in models predicting carbon 365 

storage (Cozzoli et al., 2019). The hydrodynamic regime has a strong influence over sediment type, as high energy 

environments prevent mud deposition or resuspend finer particles, while low energy environments allow fine 

sediments to settle and accumulate, which is conducive to mud deposition and OC accumulation (Hanebuth et al., 

2015). Similar findings were reported by Diesing et al. (2017), where low hydrodynamic activity was positively 

correlated with OC content. These insights, coupled with the present work, underscore the need to incorporate 370 

sediment dynamics, such as sediment mixing or disturbance, into models predicting OC stock, particularly in light 

of human activities such as trawling and offshore development (Epstein and Roberts, 2022) 

Diesing et al. (2017), Smeaton et al. (2021) and Atwood et al. (2020) all reported better model accuracy compared 

to those in the present study. For example, Diesing et al. (2017) and Atwood et al. (2020) reported R2 values of 

75% and 76%, respectively. Despite OCcontent post showing improved performance compared to OCcontent pre and OC 375 

stock input data (predictors and DBD) showed reduced error, model performance reported here is lower when 

compared to previous studies investigating OCstock in marine sediments. These apparent differences in model 

performance may be due to the validation approach used and spatial autocorrelation, which may be inflating model 

metrics (Milà et al., 2022). For example, the present study used the kNNDM algorithm to ensure spatial 

independence between cross validation training folds, which ensures that for each train/test fold, data that are 380 

tested on are spatially independent of test data. However, random k fold cross validation, as used by Atwood et 

al. (2020) and Diesing et al. (2017), are likely to train and test on data that are spatially dependant, and thus 

artificially increasing the likelihood of the model predicting correctly (Milà et al., 2022). Similarly, Smeaton et 

al. (2021) who did use a form of spatial cross validation reported comparable model performance to our study 

(R2=53%, RMSE=1.72). Smeaton et al. (2021) used ‘spatial blocks’ to determine train/test splits. However, these 385 

spatial blocks were defined as ICES statistical grids, which do not ensure spatial independence between train/test 

folds, unlike the kNNDM algorithm used in the present study. 
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Reducing model error through adjusting model input data, predictions presented here still carry uncertainty. Even 

though prediction uncertainty estimates were performed, there is still more uncertainty that could not be 

quantified. The data that was sourced was not all recorded uniformly, and some components were unavailable. 390 

For example, uncertainty in OC content data was not reported, thus we were unable to propagate those 

uncertainties into final OC content and OC stock uncertainty predictions. This was also true for predictor data. 

Thus, uncertainties in measured OC content and predictor data could not be included in final model uncertainty 

estimates. In addition, DBD data were lacking across the study area and only 3% (18 of 642) of all DBD 

observational data used in bias adjustment were located within the study area. However, despite this, DBD 395 

estimates presented here have reduced error when compared to observational data across the Northwest European 

shelf when compared to estimates from porosity. Findings from the present study show spatial models of organic 

carbon can still be significantly improved from increased in situ data. Additionally, incorporating these datasets 

into public repositories can improve efforts to estimate organic carbon stocks by providing ground truthed data on 

which to base numerical models. 400 

6 Conclusion 

Overall, our findings suggest that marine sedimentary OC stocks could be lower than previously estimated, a 

conclusion with important implications for seabed management. The findings suggest that adjusting model inputs 

based on in situ data, may help reduce uncertainties in model predictions. We highlight the critical role that 

accurate DBD estimates play in determining OC stock. Moving forward, more comprehensive in situ DBD 405 

measurements and refined DBD models are essential for improving the accuracy of OC stock predictions. 

Alternatively, OC stocks could be calculated directly per sediment core, reducing the number of models needed 

to estimate OC stocks, thus reducing uncertainty in final estimates. These efforts will be instrumental in 

developing better strategies for managing marine sedimentary OC stocks. 

Code/Data availability 410 
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repository (https://doi.org/10.5281/zenodo.14859982). Additionally, the bias adjusted predictor data layers 

developed and the random forest dry bulk density model can be accessed from Zenodo 

(https://doi.org/10.5281/zenodo.14859982). The underlying code used to develop these data layers and produce 
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Random Forest Models for Organic Carbon Stock Estimation” github repository 
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Tables and Figures 

Table 1: Summary of organic carbon content and stock model inputs. Directly sourced adjustments were when 

the adjusted data was soured directly from literature that developed a model based on locally measured 

observational data. SPM data points were for all months to create monthly interpolated surfaces then they were 

merged to create seasonal interpolated surfaces. RMSE represents the change in RMSE after QQ mapping. 

Negative RMSE values represent reduced error, while positive RMSE values show increased error. 

Predictor Unit Abbreviation 
Pre adjustment 

source 

NWE shelf 

data 

points 

available 

Adjustment 

method 

RMSE 

after 

adjustment 

Distance to coast km - 
Calculated from 

data points 
- None - 

Bathymetry m - EMODNet - None - 

Bottom water salinity - BWS 

Copernicus 

marine data 

portal 

57,965 QQ mapping -0.01 

Bottom water temperature C BWT 

Copernicus 

marine data 
portal 

173,607 QQ mapping 0.00 

Mean bottom water velocity m s-1 BWVmean 

Copernicus 

marine data 
portal 

- Averaging - 

Maximum bottom water velocity m s-1 BWVmax 

Copernicus 

marine data 
portal 

- Averaging - 

Surface chlorophyll-a g l-1 - 

Copernicus 

marine data 
portal 

21,108 QQ mapping -1.13 

Summer surface Suspended 

Particulate Matter 
mg l-1 SPMsummer 

Copernicus 

marine data 
portal 

542* QQ mapping +2.31 

Winter surface Suspended 

Particulate Matter 
mg l-1 SPMwinter 

Copernicus 

marine data 
portal 

542* QQ mapping -0.85 

Mud content % Cmud 
Mitchell et al. 

(2019) 
- Averaging -0.03 

Sand content % Csand 
Mitchell et al. 

(2019) 
- Averaging -0.05 

Gravel content % Cgravel 
Mitchell et al. 

(2019) 
- Averaging -0.03 

Mean wave orbital velocity at 

seafloor 
m s-1 WOVmean 

Wilson et al. 

(2018) 
- 

Directly 

sourced 
- 

Maximum wave orbital velocity 

at seafloor 
m s-1 WOVmax 

Wilson et al. 

(2018) 
- 

Directly 

sourced 
- 

Dry bulk density kg m-3 DBD 
Modelled from 

modelled 

porosity 

706 
Random 

forest 

modelling 

-194.73 

 

Table 2: Summary of outputs from models trained on non-bias adjusted data (predictorspre) and bias adjusted 

data (predictorspost). Mean OCcontent represents the mean prediction value across the study area; total reservoir 

estimate is the total OC stock reservoir for the study area; mean DBD is the mean DBD predicted across the 

study area. R2 and RMSE (Root Mean Squared Error) represent performance metrics used in model selection 

process. 

Input data Mean DBD (kg m-3) ± sd Mean OCcontent (%) ± sd 
Total reservoir OC estimate 

(Tg) ± total uncertainty 

Predictorspre 1501.60 ± 66 0.65 ± 0.62 67.9 ± 62.9 

Predictorspost 1191 ± 175 0.57 ± 0.58 46.6 ± 43.6 
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Figure 1: Summary of steps taken to train and predict form two different models, which include: 1) collating 

response data; 2a) compiling OC content predictor data (predictorspre); 3a) training a random forest model to 

predict OC content on the non-adjusted predictor data (OCpre); 4a) modelling Dry Bulk Density (DBD) from 

porosity (DBDpre); 5a) predicting OC stock across the study area using OCpre and DBDpre; 2b) bias adjusting 

predictorspre data using quantile-quantile mapping; 3b) compiling OC content predictor data after it has been bias 

adjusted (OCcontent post); 4b) training a random forest model to predict OC content on the bias adjusted predictor 

data (predictorspost); 5b) training a random forest model to predict DBD on the bias adjusted predictor data 

(DBDpost); 6) predicting OC stock across the study area using OCpost and DBDpost. 
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Figure 2: Study area within the Irish Sea (thin black border) and within the greater North West European shelf 

(inset). Points indicate organic carbon (OC) data coloured by the organic carbon content. Pink areas  show 

internal waters that have been excluded from the study area. Thick black outlined polygons indicate the 

‘Mudbelt’ (northern) and the ‘Smalls’ (southern), areas of known high mud content within the Irish Sea. 
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Figure 3:  Cumulative distribution functions (CDF) of bias adjusted (adjusted) and not bias adjusted (modelled) 

model input data and observational data used in bias adjustment. 
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Figure 4:  Partial dependence plots showing the relationship between a) OC content and non-bias adjusted 

model predictors selected by Forward Feature Selection (FFS): surface chlorophyll-a, surface summer 

suspended particulate matter, maximum wave orbital velocity at the seafloor; gravel content and bottom water 

salinity; b) bias adjusted predictors selected by FFS: bathymetry, mud content, surface chlorophyll-a, distance to 

the nearest coast and maximum wave orbital velocity at the seafloor and; c) bias adjusted predictors and dry 

bulk density (DBD) selected by FFS: surface winter suspended particulate matter, maximum wave orbital 

velocity at the seafloor, surface summer suspended particulate matter, mud content, surface chlorophyll-a and 

distance to the nearest coast. 
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Figure 5: a) Predicted organic carbon (OC) content using adjusted model inputs; b) the associated uncertainty 

and c) difference between not bias adjusted and bias adjusted predictions across the study area (difference = 

OCcontent pre – OCcontent post). Negative values indicate where predictions with adjusted model inputs were higher 

than non-bias adjusted inputs. 
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Figure 6: a) Predicted dry bulk density (DBD) content using adjusted model inputs; b) the associated uncertainty 

and c) difference between DBD modelled from porosity and using an RF (DBDpre  - DBDpost). Negative values 

indicate where predictions with adjusted model inputs were higher than non-bias adjusted inputs. 
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Figure 7: a) Predicted organic carbon (OC) stock using adjusted model inputs; b) the associated uncertainty and 

c) difference between not bias adjusted and bias adjusted predictions across the study area (difference =  OCstock 

pre – OCstock post). Negative values indicate where predictions with adjusted model inputs were higher than non-

bias adjusted inputs. 
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